Organische Synthesen mit Übergangsmetallkomplexen, 43¹⁾

2-Azaallenyl-Chromkomplexe; Insertion von 1-Aminopropin in M = C- und C = O-Bindungen. Intramolekulare Cyclopropanierung sowie [3+2]-Cycloaddition unter Bildung eines 1,3-Diaminoindens

Rudolf Aumann*^a, Heinrich Heinen^a, Carl Krüger^b und Peter Betz^b

Organisch-Chemisches Institut der Universität Münster^a, Orléans-Ring 23, D-4400 Münster

Max-Planck-Institut für Kohlenforschung^b, Lembkestraße 5, D-4330 Mülheim/Ruhr

Eingegangen am 11. August 1989

Key Words: 2-Azaallenyl chromium complexes, building blocks for cyclopropanes and 1,3-diaminoindenes / 1-Aminoalkynes, insertion into Cr=C, C=O, and C-O bonds / Cyclopropanation, intramolecular, via iminocarbene chromium complexes / 1,3-Indanediones and γ-lactones via cyclic anhydrides

Organic Syntheses via Transition Metal Complexes, 43^{11} . – 2-Azaallenyl Chromium Complexes; Insertion of 1-Aminopropyne into M=C and C=O Bonds; Intramolecular Cyclopropanation and [3+2]Cycloaddition with Formation of a 1,3-Diaminoindene

The 2-azaallenyl complex $L_n M^{\odot} - C(Ph) = N^{\odot} = C(Ph)OCO - Ph$ **3** $[L_n M = Cr(CO)_5]$ adds to the 1-aminopropyne $Et_2 N - C \equiv C - CH_3$ (4) to give the aminocarbene complexes $L_n M = C(NEt_2) - C(CH_3) = C(Ph) - N(COPh)_2$ [(E)-5] and $L_n M = C(NEt_2) - C(CH_3) = C(Ph) - NH(COPh)$ [(E)-9] (by insertion of 4 into the M = C bond of 3) as well as a 1,3-diaminoindene 6 (by [3+2] cycloaddition). An iminocarbene complex $L_n M = C(Ph) - N = C(Ph) - O - C(Ph) = C(CH_3) - CONEt_2$ (7) is formed as a further product (by insertion of 4 into the C = O bond of 3). The latter type of reaction can also be applied to metal-free carbonyl

2-Azaallenyl (= Iminocarben)-Chromkomplexe $L_n M^{\odot}$ – $CR = N^{\odot} = CXR^1 [L_n M = (CO)_5 Cr]$ sind leicht zugänglich²⁻⁴). Sie enthalten eine reaktive CNC-Einheit, die sich auf ungesättigte organische Substrate übertragen läßt. Wir erkunden elementare Reaktionsmuster dieser Komplexe und haben in diesem Zusammenhang Metall-induzierte Cycloadditionen von 2-Azaallenyl-Komplexen zum Aufbau von N-Heterocyclen untersucht, bei denen die CNC-Einheit an Isocyanide⁵ bzw. Alkine⁶ addiert wurde.

Die Reaktivität der Komplexe $L_n M^{\odot} - CR = N^{\oplus} = CXR^1$ hängt erheblich von den Substituenten R, R¹ und X ab. Zwar reagieren die Verbindungen spezifisch; eine "kleine" Änderung ihres Substitutionsmusters (z.B. der Austausch von X = OEt gegen X = OCO – Ph) kann jedoch bereits die Bildung andersartiger Produkte zur Folge haben. So liefert ein 2-Azaallenyl("imidat")-Chromkomplex [X = OEt, R = R¹ = C₆H₅, L_nM = (CO)₅Cr] mit dem 1-Aminoalkin 4 unter Metall-induzierter [3 + 2]-Cycloaddition in glatter Reaktion ein 2H-Pyrrol⁶, der 2-Azaallenyl("anhydrid")-Chromkomplex 3 [X = OCO – C₆H₅, R = R¹ = C₆H₅, L_nM = (CO)₅Cr] hingegen mit 4 keine Heterocyclen, sondern ausschließlich Carbocyclen. Letzterer Reaktionsweg ist Gegencompounds: thus phthalic anhydride reacts smoothly with 4 to give a γ -lactone 12 and a 1,3-indanedione 13 by insertion of 4 into a C = O and C - O bond, respectively. The thermolysis of the iminocarbene complex 7 yields a cyclopropane derivative 14 by an intramolecular attack of the carbene carbon at the (O)C = C bond. The structure of 14 has been determined by a crystal structure analysis. On thermolysis of 3 a triphenyloxazole 15 is obtained. The mechanisms of these reactions are discussed.

stand vorliegender Untersuchung, mit der wir das Studium der Reaktivität dieser Komplexe systematisch fortsetzen.

3 ist durch doppelte Benzoylierung des Aminocarben-Komplexes 1 mit Benzoylchlorid in Gegenwart von Triethylamin³⁾ erhältlich [Gl. (1)]. Der zweite Benzoylrest wird dabei nicht am Stickstoff, sondern am Sauerstoff des ersten Benzoylrests gebunden.

$$L_{n}M = \begin{pmatrix} NH_{2} \\ + 2 PhCOCi \\ 1 \end{pmatrix} + 2 PhCOCi + \frac{Et_{3}N}{-[Et_{3}NH]Ci} \rightarrow Ph \qquad (1)$$

$$1 \qquad 2 \qquad 3 \qquad Ph \qquad (1)$$

$$1 \qquad 3: L_{n}M = (CO)_{5}Cr$$

Der C-N-C-Valenzwinkel von 2-Azaallenyl-Liganden in Komplexen 3 ist sehr variabel²⁻⁴⁾ und hängt von der Akzeptorstärke der beiden terminalen Kohlenstoffatome ab. Je nach Substituenten ergeben sich graduelle Übergänge zwischen (nahezu) linearen 2-Azaallenyl- bis hin zu gewinkelten Iminocarben-Strukturen. Im "Anhydrid" L_nM^{\odot} – C(Ph)=N^{\oplus} =CX (Ph) 3 (X = OCO – Ph) beträgt der Winkel 161.6°^{3.7)}, im entsprechenden "Imidat" (X = OEt) ist er

Chem. Ber. 123 (1990) 605-610 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009-2940/90/0303-0605 \$ 02.50/0

auf 174.3^{° 3)} aufgeweitet infolge der geringeren Basizität der OCO-Ph- gegenüber der OEt-Gruppe. Der Benzoatrest bewirkt also einerseits eine stärkere Abwinkelung des CNC-Liganden, andererseits auch eine erhebliche Steigerung der Reaktivität des "Anhydrids" 3 verglichen mit der des "Imidats".

Insertion einer $C \equiv C$ - in die Cr = C-Bindung von 3; 1,3-Diaminoinden durch Metall-induzierte [3+2]-Cycloaddition; Insertion einer $C \equiv C$ - in eine C = O-Bindung von 3

3 addiert das 1-Aminopropin 4 bereits unter sehr milden Bedingungen (1 h, 20°C) [Gl. (2)]. Dabei entstehen jedoch keine N-Heterocyclen wie im Fall des "Imidats" (s.o.)⁶, sondern ein Aminocarben-Komplex 5 (durch Insertion der $C \equiv C$ -Bindung von 4 in die M = C-Bindung von 3) sowie ein Iminocarben-Komplex 7 (durch Insertion von 4 in die C=O-Bindung von 3). In Konkurrenz zu den Insertionsprodukten bildet sich ein 1,3-Diaminoinden 6 (durch Metallinduzierte [3+2]-Cycloaddition von 4 an 3). Das Produktverhältnis 5:6:7 beträgt 6:7:4 bei einer (isolierten) Gesamtausbeute von 68%. In den Formeln 5-7 ist das Grundgerüst von 4 hervorgehoben.

Bei der Chromatographie der aus 3 und 4 erhaltenen Reaktionsmischung an Kieselgel entsteht zusätzlich zu den genannten Verbindungen ein Aminocarben-Komplex 9. Wir vermuten, daß 9 durch Hydrolyse eines primären Insertionsprodukts 8 von 4 in die Cr = C-Bindung von 3 hervorgeht.

Strukturaufklärung der Verbindungen 5, 6, 7, 9

Die Struktur von 7 wurde anhand einer Kristallstrukturanalyse⁸⁾ bestimmt, die bis zum *R*-Faktor von ca. 13% verfeinert wurde. Für die Aminocarben-Komplexe 5 und 9 beruhen die Strukturvorschläge auf spektroskopischen Messungen. Charakteristisch sind vor allem die ¹³C-NMR-Signale (Tab. 1) von C-1 und C-3⁹⁾. Auch sind beide NCH₂- Gruppen jeweils diastereotop und weisen bei 20°C sowohl in den ¹H- als auch ¹³C-NMR-Spektren getrennte Resonanzlinien auf. Entsprechendes gilt für die ¹³C-Signale beider N-COPh-Gruppen⁹⁾ von **5** und **6**. Demgegenüber zeigen ¹Hund ¹³C-NMR-Spektren von 7 bei 20°C (300 bzw. 75 MHz) deutliche Linienverbreiterungen (s. Exp. Teil). Bei -20° C wird ein unteres (scharfes) Grenzspektrum erreicht, in dem zwei (rotamere) Komplexe **7-A** und **7-B** im Verhältnis ca. 5:3 nebeneinander beobachtet werden. Wir führen die dynamischen Effekte auf eine in Lösung (auf der NMR-Zeitskala) rasche *E/Z*-Umwandlung am Stickstoff zurück¹⁰⁾ und ordnen **7-A** die *E*-Konfiguration zu. Eine Kristallstrukturanalyse von **7** ergab die *E*-Konfiguration ebenfalls in festem Zustand.

Tab. 1. Einige für 5, 7 und 9 charakteristische ¹³C-NMR- und IR-Parameter (δ-Werte bzw. cm⁻¹, s. auch Exp. Teil)

	C-1	C-3 ⁹⁾	C-5	C = O	
5	270.62	145.94		174.03 172.83	$1689.6, 1656.8 \\ [v(O=C-N-C=O)]$
7-A*) 7-B	267.33 272.79	143.11 146.20	141.87 144.15	167.39 168.30	1637.6 [v(C=O)]
9	270.99	143.56		166.79	1637.6, 1512.2 [Amid I und II]

*) ¹³C-NMR bei -20° C; **7-A**:**7-B** = 5:3.

Im Einklang mit den oben angegebenen Strukturen weist 5 zwei Carbonylbanden bei 1689.6 und 1656.8 cm⁻¹ auf, im Gegensatz zu 6, das nur eine Bande bei 1689.9 zeigt (vgl. $C_6H_5CO-NH-COC_6H_5$: 1685.8). Charakteristisch für 9 sind die Banden 1637.6 und 1512.2, die wir als "Amid I" und "Amid II" zuordnen.

Zur Sicherung der Struktur des 1,3-Diaminoindens 6 wurde dieses mit ethanolischer KOH (glatt) zu 10 abgebaut [Gl. (4)].

Überlegungen zum Reaktionsablauf

In Schema 1 sind einige Grundmuster für die Addition von $C \equiv C$ -Bindungen von 1-Aminoalkinen an 2-Azaallenyl-Komplexe zusammengefaßt. Es sind dies:

 [2+2]-Cycloaddition des 1-Aminoalkins an die M=C-Bindung unter Insertion und Bildung eines Aminocarben-Komplexes;

- [3+2]-Cycloaddition des 1-Aminoalkins unter ortho-Substitution am Arylrest;
- [2+2]-Cycloaddition des 1-Aminoalkins an die C=O-Bindung unter Bildung eines Oxets und dessen nachfolgende Ringöffnung;
- [4+2]-Cycloaddition des 1-Aminoalkins unter Ausbildung eines Metallacyclus, der unter reduktiver Eliminierung zu einem 2H-Pyrrol zerfällt.
- Schema 1. Einige Additionsmöglichkeiten ungesättigter Substrate an 2-Azaallenyl-Komplexe

Der unter 4. angegebene Reaktionsweg wurde bei der Umsetzung von 4 mit dem "Imidat" (X = OEt, s.o.)⁶⁾ beschritten. Im Gegensatz dazu laufen bei der Umsetzung von 4 mit dem "Anhydrid" 3 (X = OCO - Ph) nur die unter 1. bis 3. angegebenen Prozesse ab, bei denen letztlich die Verbindungen 5-7 entstehen.

Es erscheint plausibel, daß durch (nucleophilen) Angriff von 4 am Carbenkohlenstoff von 3 zunächst eine Zwischenstufe C entsteht. Diese könnte unter minimaler Änderung der Molekülgeometrie (möglicherweise in einer Gleichgewichtsreaktion) durch einen Metall-induzierten Ringschluß zu D bzw. unter 1,3-Wanderung des Metallrests zu F umlagern. Aus D läßt sich durch Wasserstoffwanderung über E zwanglos die Bildung des Indens 6 erklären. F sollte unter Ladungsausgleich und unter Anlagerung von L = CO rasch zum Aminocarben-Komplex 5 isomerisieren. Grundsätzlich müssen als Vorstufen von 5 jedoch auch "nicht-klassische" Strukturen wie z. B. G¹¹ in Betracht gezogen werden.

Anders als bei 5 und 6 wird die Bildung von 7 durch den Angriff von 4 nicht am Carben, sondern am Carbonylkohlenstoff des Benzoatrestes von 3 eingeleitet. Die Addition verläuft möglicherweise über ein Oxet¹² H, das durch elektrocyclische Ringöffnung anschließend zu 7 isomerisiert. Für diesen Reaktionsverlauf spricht die Z-Konfiguration der (O)C=C-Bindung, die durch eine Kristallstrukturanalyse bestätigt wird.

Die Reaktion von 4 mit Carbonylverbindungen läßt sich problemlos z.B. auf Phthalsäureanhydrid (11) übertragen. 11 liefert bei der Umsetzung mit 4 [Gl. (5)] das γ -Lacton 12 und das 1,3-Indandion 13 im Verhältnis ca. 1:7 (Gesamtausbeute > 90%), wahrscheinlich über eine der Oxet-Zwischenstufen I. Diese Reaktion ist präparativ nützlich, da sie die Darstellung eines carbocyclischen Fünfrings aus leicht zugänglichen cyclischen Anhydriden erlaubt.

Oxazole 14 und 15 bei der Thermolyse von 7 bzw. von 3

Die Thermolyse von 7 (Toluol, 80° C) führt unter Übertragung des Carbenkohlenstoffs auf die (O)C = C-Bindung von 7-B stereospezifisch zu einem Cyclopropanderivat 14 [Gl. (6)]. Die Struktur von 14 wurde kristallographisch ermittelt. Sie steht im Einklang mit den spektroskopischen Daten.

In diesem Zusammnenhang ist die Thermolyse von 3 interessant (Toluol, 100°C), bei der das Triphenyloxazol 15 entsteht. Analog zu Gl. (6) könnte diese Reaktion über einen Keten-Komplex verlaufen, der zu K cyclisiert. Unter Abspaltung von CO_2 zerfällt K zu 15 [Gl. (7)].

Kristallstrukturanalyse von 14

Die Kristallstrukturanalyse von 14 ergab die in Abb. 1 wiedergegebene Molekülstruktur. Kristallographische Daten, ausgewählte Bindungsabstände und -winkel und Atomkoordinaten sind in den Tabellen 2, 3 und 4 aufgeführt.

Abb. 1. Kristallstruktur von 14

Tab. 2. Daten zur Kristallstrukturanalyse von 14^{a)}

Formel C₂₈H₂₈N₂O₂, Molmasse 424.5, Kristallgröße 0.32 x 0.47 x 0.25 mm, farblos, a = 12.187(1), b = 12.386(1), c = 15.994(1) Å, $\beta = 104.12(1)^\circ$, V = 2341.3 Å³, d_{ber.} = 1.20 gcm⁻³, $\mu = 5.62 \text{ cm}^{-1}$, $\lambda = 1.54178 \text{ Å}$, F(000) = 904, Raumgruppe $P2_1/n$, Z = 4, Nonius CAD4 Diffraktometer, Meßmethode ω / 2 θ , $Cu-K_{\alpha}$ -Strahlung, sin θ/λ_{max} = 0.63, gemessene Reflexe 5052 ($\pm h$,+k,+l), unabhängige Reflexe 4649, davon beobachtete Reflexe 3556 ($I > 2\sigma(I)$), 401 verfeinerte Parameter, Lösung der Struktur mit direkten Methoden, Positionen der H-Atome lokalisiert und isotrop verfeinert, $R = 0.051, R_w = 0.053 (w = 1/\sigma^2(I)),$ EOF = 2.1, max. Restelectronendichte 0.15 $e^{A^{-3}}$.

³⁰ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54254, des Autors und des Zeitschriftenzitats angefordert werden. Das Molekül enthält einen Bicyclus, der aus einem Oxazolin- und einem Cyclopropanring besteht. Die beiden Ringe

Tab. 3. Ausgewählte Bindungsabstände [Å] und -winkel [°] von 14

O(1) - C(1)	1.363(2)	C(8)	- O(1) - C(1)	107.0(1)
O(1) - C(8)	1.442(2)	C(15)	- N(1) - C(1)	106.8(2)
O(2) - C(24)	1.234(3)	C(27)	- N(2) - C(25)	116.5(2)
N(1) - C(1)	1.282(2)	C(27)	- N(2) - C(24)	125.3(2)
N(1) - C(15)	1.444(2)	C(25)	- N(2) - C(24)	118.0(2)
N(2) - C(24)	1.343(3)	C(2)	- C(1) - N(1)	126.2(2)
N(2) - C(25)	1.481(3)	C(2)	- C(1) - O(1)	116.3(2)
N(2) - C(27)	1.468(3)	N(1)	- C(1) - O(1)	117.5(2)
C(1) - C(2)	1.464(3)	C(22)	- C(8) - C(15)	61.0(1)
C(8) - C(9)	1.488(3)	C(22)	- C(8) - O(1)	113.2(1)
C(8) – C(15)	1.547(3)	C(15)	- C(8) - O(1)	102.8(1)
C(8) - C(22)	1.507(3)	C(9)	- C(8) - O(1)	110.3(1)
C(15) - C(16)	1.492(3)	C(22)	- C(15) - C(8)	58.2(1)
C(15) – C(22)	1.551(3)	C(22)	- C(15) - N(1)	115.6(2)
C(22) - C(23)	1.520(3)	C(16)	- C(15) - N(1)	114.4(2)
C(22) – C(24)	1.520(3)	C(8)	- C(15) - N(1)	105.9(1)
C(25) - C(26)	1.511(4)	C(24)	- C(22) - C(23)	111.6(2)
C(27) – C(28)	1.507(5)	C(24)	- C(22) - C(15)	123.9(2)
		C(24)	- C(22) - C(8)	115.4(2)
		C(23)	- C(22) - C(8)	120.1(2)
		C(15)	- C(22) - C(8)	60.8(1)
		C(22)	- C(24) - N(2)	120.4(2)
		C(22)	- C(24) - O(2)	117.7(2)
		N(2)	- C(24) - O(2)	121.8(2)

Tab. 4. Atomkoordinaten und thermische Parameter (Å²) von 14 $U_{eq} = 1/3 \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \bar{a}_i \bar{a}_j$

Atom	x	У	Z	U _{eq}
0(1)	0.1371(1)	0.9800(1)	0.3503(1)	0.040
O(2)	0.3117(1)	0.8550(1)	0.2943(1)	0.060
N(1)	0.0209(1)	0.8398(1)	0.3574(1)	0.039
N(2)	0.1996(1)	0.7080(1)	0.2744(1)	0.050
C(1)	0.0409(2)	0.9232(2)	0.3160(1)	0.038
C(2)	-0.0294(2)	0.9633(2)	0.2343(1)	0.040
C(3)	-0.1429(2)	0.9335(2)	0.2087(2)	0.059
C(4)	-0.2099(2)	0.9708(2)	0.1317(2)	0.073
C(5)	-0.1652(2)	1.0369(2)	0.0798(2)	0.070
C(6)	-0.0538(2)	1.0659(2)	0.1042(2)	0.065
C(7)	0.0146(2)	1.0306(2)	0.1816(1)	0.051
C(8)	0.1949(1)	0.9244(1)	0.4277(1)	0.036
C(9)	0.2515(2)	1.0034(1)	0.4945(1)	0.037
C(10)	0.1864(2)	1.0806(2)	0.5230(1)	0.050
C(11)	0.2358(2)	1.1572(2)	0.5830(2)	0.057
C(12)	0.3520(2)	1.1576(2)	0.6155(1)	0.053
C(13)	0.4175(2)	1.0822(2)	0.5873(1)	0.053
C(14)	0.3676(2)	1.0052(2)	0.5270(1)	0.047
C(15)	0.1155(2)	0.8281(1)	0.4314(1)	0.038
C(16)	0.0862(2)	0.7788(2)	0.5082(1)	0.041
C (17)	0.1241(2)	0.8198(2)	0.5911(1)	0.054
C(18)	0.0891(3)	0.7753(2)	0.6598(2)	0.068
C(19)	0.0154(2)	0.6888(2)	0.6465(2)	0.068
C(20)	-0.0210(2)	0.6453(2)	0.5653(2)	0.062
C(21)	0.0134(2)	0.6904(2)	0.4962(2)	0.051
C(22)	0.2324(2)	0.8123(2)	0.4110(1)	0.039
C(23)	0.3223(2)	0.7549(2)	0.4791(2)	0.051
C(24)	0.2487(2)	0.7930(2)	0.3210(1)	0.043
C(25)	0.2202(3)	0.6922(2)	0.1877(2)	0.064
C(26)	0.1525(4)	0.7687(3)	0.1212(2)	0.091
C(27)	0.1353(2)	0.6231(2)	0.3052(2)	0.066
C(28)	0.0144(3)	0.6119(3)	0.2543(3)	0.094

sind über die gemeinsamen Atome C(8) und C(15) verknüpft. Der Abstand zwischen diesen beiden Atomen [1.547(3) Å] ist ebenso wie die Bindungslänge von 1.551(3) Å zwischen C(15) und C(22) größer als die in anderen Cyclopropanderivaten, in denen die C-C-Distanz im Mittel 1.510(26) Å beträgt¹³⁾. Alle übrigen Abstände entsprechen den Erfahrungswerten. Der Interplanarwinkel zwischen den beiden Ringebenen beläuft sich auf 110°. Während der Oxazolinring dreifach Phenyl-substituiert ist, trägt das Brückenatom C(22) einen Methyl- und einen Diethylformamido-Substituenten.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie unterstützt.

Experimenteller Teil

Umsetzungen und Aufarbeitungen erfolgten unter Inertgas. Alle Lösungsmittel waren trocken und frisch destilliert. – ¹H- und ¹³C-NMR-Spektren: Bruker WM 300 (Zuordnung durch DR-Experimente bzw. Breitband-, DEPT- und "Gated-decoupling"-Messungen). – IR-Spektren: Digilab FTS 45. – Massenspektren: Finnigan MAT 312. – Elementaranalysen: Perkin-Elmer-240-Elemental-Analyser. – Säulenchromatographie: Merck-Kieselgel 100; Dünnschichtchromatographie: Merck DC-Alufolien Kieselgel 60 F 254. – Petroletherfraktion: 40–60°C. R_{Γ} Werte beziehen sich auf DC-Tests.

Pentacarbonyl[3-(dibenzoylamino)-1-(diethylamino)-2-methyl-3phenyl-E-2-propenyliden [chrom(0) (5), 1-(Dibenzoylamino)-3-(diethylamino)-2-methylinden (6), Pentacarbonyl/6-(diethylcarbamoyl)-1,3,5-triphenyl-4-oxa-2-aza-2,5-heptadienyliden]chrom(0) (7), [3-(Benzoylamino)-1-(diethylamino)-2-methyl-3-phenyl-2-propenyliden | pentacarbonylchrom(0) (9): Zu einer Suspension von 505 mg (1.00 mmol) 3-(Benzoyloxy)-2-azaallenyl-Komplex 3³⁾ in 3 ml trokkenem Ether gibt man bei 20°C in einem luftdicht verschraubbaren 5-ml-Glasgefäß 222 mg (2.00 mmol) 4. Es entsteht eine rote Lösung. Anhand von DC-Tests (Petrolether/Dichlormethan 4:1, 3: $R_f =$ 0.7) läßt sich zeigen, daß 3 nach ca. 1 h vollständig verbraucht ist. Man dampft ein (20°C/15 Torr), nimmt in 3 ml Toluol auf und chromatographiert an Kieselgel (Säule 40×2 cm). Mit Dichlormethan eluiert man eine gelbe Fraktion mit 5 $\lceil R_f = 0.7$ in Dichlormethan; 100 mg, 16%; Schmp. 158°C aus Dichlormethan/Petrolether (1:15) bei -20° C], anschließend eine rote Mischfraktion aus 7 und 9 im Verhältnis 2:1 [$R_f = 0.3$ in Dichlormethan; 160 mg, rotes Öl, aus wenig Dichlormethan/Petrolether (1:15) bei -20°C Kristalle von 7, 100 mg, 16%, neben fast farblosen Kristallen von 9, 40 mg, 8%; 7: Schmp. 88°C, Zers., aus Toluol/Petrolether bei -20°C; 9: Schmp. 180°C, Zers., aus Dichlormethan/Petrolether 1:5 bei -20° C]. Mit Ether/Dichlormethan (1:1) erhält man anschlie-Bend eine farblose Fraktion von 6 [$R_{\rm f} = 0.1$ in Dichlormethan; 120 mg, 28%; Schmp. 142°C aus Dichlormethan/Petrolether (1:15) bei $-20^{\circ}C$].

5: ¹H-NMR (CDCl₃): δ = 7.73, 7.57 (je 2H, je ,,d", je 2,6-H von 2 C₆H₅CO), 7.40 – 7.25 (11 H, m, 3 C₆H₅); 4.50, 4.03, 3.34, (1:2:1 H, 2 diastereotope NCH₂); 2.05 (3 H, s, CH₃); 1.34, 1.16 (je 3 H, je t, 2 CH₃ Et). – ¹³C-NMR (CDCl₃, 20°C): δ = 270.62 (Cr=C); 222.47, 216.19, [1:4, Cr(CO)₅]; 174.03, 172.83 (je NCO); 145.94, 136.53, 123.48 (C-2,3 und C-*i* 3-Ph); 135.37, 134.96 (2 C-*i* COPh); 132.41, 132.20, 128.54, 128.49, 128.30, 128.12 [1:1:2:2:2:2, 2 C(2-6) COPh]; 129.08, 127.98, 127.59 [2:1:2 C(2-6) 3-Ph]; 52.69, 48.43 (2 NCH₂); 19.08 (2-CH₃); 13.40, 12.78 (je CH₃ Et). – IR (Hexan), cm⁻¹ (%): \tilde{v} = 2056.1 (20), 1936.5 (90), 1928.8 (100) [v(C≡O)]; IR (Film): 1689.6 (30), 1656.8 (20) [v(O=C-N-C=O)]. – MS (70 eV): m/z (%) = [M[⊕]] fehlt, 476 (1) [M - 5 CO], 385 (1.5) [476 - C₇H₇], 371 (0.5) [476 - C₆H₅CO], 305 (98) [476 - Cr - C₆H₅CO], 277 (30) [305 - C₂H₄], 276 (100) [305 - C₂H₅], 248 (40) [276 - C₂H₄] 406 (8), 405 (10) [476 - C₂H₅NC₂H₄], 324 (30) [405 - C₆H₅], 246 (10), 203 (10) [324 - C₆H₅COO], 202 (20), 105 (100). C₃₃H₂₈CrN₂O₇ (616.6) Ber. C 64.28 H 4.58 N 4.54 Gef. C 63.92 H 4.54 N 4.55

6: ¹H-NMR (CDCl₃): δ = 7.85, 7.78 [je 2H, je ,,d", je 2,6-H der diastereotopen C₆H₅CO], 7.52 – 7.12 [10H, m, je 3- bis 5-H von 2 C₆H₅CO und (4–6)-H], 5.32 (2H, s, CH₂Cl₂), 4.28 (1H, s, 1-H), 2.30 und 2.12 (je 2H, je m, je diastereotope NCH₂), 1.80 (3H, s, 2-CH₃), 0.88 (6H, t, 2 CH₃ Et). – ¹³C-NMR (CDCl₃): δ = 172.73, 172.06 (2 diastereotope C₆H₅CO); 144.91, 143.39, 140.17, 134.94 (1:1:1:1, C-2,3,3a,7a); 134.41 und 134.29 (je C-*i* C₆H₅CO); 132.20, 132.34, 128.23, 128.29, 128.37, 128.43 (1:1:2:2:2:2, 2 C(2-6) C₆H₅); 127.29, 124.85, 124.30, 117.42 [C-(4-7)]; 67.92 (C-1), 53.31 (CH₂Cl₂), 44.82 (2 NCH₂), 14.33 (2 CH₃ Et), 12.22 (2-CH₃). – IR (Film), cm⁻¹ (%): $\tilde{\nu}$ = 1689.9 (100) [ν (NC=O)], 1257.6 (100) [ν (=C – N)]. – MS (70 eV): *m/z* (%) = 424 (20) [M[®]], 409 (4), 353 (8) [M – C₂H₅NC₂H₄], 319 (40) [M – C₆H₅CO], 248 (10), 232 (10), 216 (20) [319 – C₆H₅CN], 200 (20) [319 – C₆H₅NCO], 105 (100).

 $\begin{array}{rl} C_{28}H_{28}N_2O_2\cdot CH_2Cl_2 \ (424.6 \ + \ 84.8) & \mbox{Ber. } C \ 68.37 \ H \ 5.94 \ N \ 5.50 \\ Gef. \ C \ 68.35 \ H \ 5.81 \ N \ 5.42 \end{array}$

7: ¹H-NMR [CDCl₃: bei -20° C beobachtet man Resonanzlinien zweier Isomere A:B = 5:3 (Werte von B in Klammern)]: δ = $7.52 - 7.00 (13 H, m, 3 C_6 H_5), 6.60 (6.89) (2 H, ,,d", 2,6-H C_6 H_5), 5.30$ (1H, s, CH₂Cl₂, der Komplex kristallisiert unter Einschluß eines halben Äquivalents Dichlormethan); 3.70, 3.40, 3.20 (3.90, 3.75, 3.35, 3.10) (2:1:1 bzw. 1:1:1:1, je m, diastereotope NCH₂); 2.06 (2.02) (3 H, s, CH₃ C-7), 1.30 und 1.03 (je 3 H, je t, CH₃ Et). - ¹³C-NMR (CDCl₃ bei -20° C): $\delta = 267.33$ (272.79) (Cr = C); 225.16, 217.00 (224.32, 216.68) [1:4, Cr(CO)₅]; 167.39 (168.30) (CONEt₂); 143.11, 141.87, 132.18, 131.40, 125.46, 123.60, (146.20, 144.15, 132.32, 132.03, 125.29, 122.18) (1:1:1:1:1:1, C-3,5,6 und 3 C-i C₆H₅); 131.83, 131.30, 128.97, 128.83, 128.20, 128.13, 127.93, 127.62 (131.59, 131.34, 128.80, 128.72, 128.66, 128.40, 127.98, 127.16) [1:1:2:2:2:2:2:2, 3 C(2-6) C₆H₅]; 53.51 (CH₂Cl₂), 42.12, 38.25 (42.48, 38.25) (2 NCH₂); 15.84, 14.14, 12.76 (14.03, 14.42, 12.44) (3 CH₃). - IR (Hexan), cm⁻¹ (%): $\tilde{v} = 2056.1 (20), 1936.5 (100, Schulter) [v(C \equiv O)]; IR (Film): 1813.1$ (10) und 1762.9 (20), 1668.4 (30) [CONEt₂]. – MS (70 eV): m/z $(\%) = [M^{\oplus}]$ fehlt, 504 (1) [M - 4 CO], 476 (2) [M - 5 CO], 424 (0.5) [Ligand], 406 (8), 405 (10) $[476 - C_2H_5NC_2H_4]$, 324 (30) $[405 - C_6H_5]$, 246 (10), 203 (10), 202 (20), 105 (100).

$\begin{array}{rl} C_{33}H_{28}CrN_2O_7 \mbox{ (616.6)} & \mbox{Ber. C 64.28 } H \mbox{ 4.58 } N \mbox{ 4.54} \\ & \mbox{Gef. C 64.01 } H \mbox{ 4.89 } N \mbox{ 4.27} \end{array}$

9: ¹H-NMR (CDCl₃): $\delta = 9.20$ (1 H, s, breit, NH), 7.87 [2 H, "d", 2,6-H C₆H₅CO], 7.57 – 7.45 und 7.35 – 7.25 (4:4, je m, 2 bis 6-H) C₆H₅ und 3 bis 5-H C₆H₅); 4.33, 4.03, 3.66 (2:1:2 H, 2 diastereotope NCH₂); 2.05 (3 H, s, CH₃); 1.42, 1.28 (je 3 H, je t, 2 CH₃ Et). – ¹³C-NMR (CDCl₃, 20°C): $\delta = 270.99$ (Cr=C); 222.53, 216.96 [1:4, Cr(CO)₅]; 166.79 (NCO); 143.56, 136.82, 133.83, 118.94 (C-2.3, 2 C-*i* C₆H₅); 52.83, 49.71 (je NCH₂); 18.63 (2-CH₃); 13.65, 13.11 (je CH₃ Et). – IR (Hexan), cm⁻¹ (%): $\tilde{v} = 2052.3$ (50), 1971.2 (20), 1915.3 (100, Schulter) [$v(C \equiv O)$]; IR (Film): 3300 (10, breit) [v(N-H)], 1637.6 (20) und 1512.2 (20) [Amid I und II]. – MS (70 eV): *m/z* (%) = [M[⊕]] fehlt, 428 (1) [M – 3 CO], 400 (2), 372 (7) [M – 5 CO], 320 (1) [372 – Cr], 304 (16), 301 (6) [372 – C₂H₅NC₂H₄], 289 (16) [304 – CH₃], 260 (20) [289 – C₂H₅], 259 (20), 227 (20) [304 – C₆H₅], 202 (26), 129 (42), 115 (54), 105 (100).

 $\begin{array}{rl} C_{26}H_{24}CrN_2O_6 \ (512.6) & \mbox{Ber. C} \ 60.94 \ H \ 4.72 \ N \ 5.47 \\ & \mbox{Gef. C} \ 60.67 \ H \ 4.76 \ N \ 5.50 \end{array}$

3-(Benzoylamino)-2-methyl-1H-inden-1-on (10) durch Hydrolyse von 6: 212 mg (0.50 mmol) 6 werden mit 57 mg (1.00 mmol) KOH in 3 ml Ethanol erwärmt (30 min, 80°C). Die Lösung wird rot. Anhand von DC-Tests wird sichergestellt, daß 6 vollständig verbraucht ist. Man dampft ein (20°C/20 Torr), versetzt mit 10 ml Dichlormethan und 0.5 ml 2 N HCl, trennt die organische Phase ab, trocknet mit Natriumsulfat und chromatographiert an Kieselgel (Säule 20 \times 2 cm) mit Ether/Petrolether (1:1). Gelbe Zone mit 10 $[R_f = 0.3, \text{Schmp. 172}^{\circ}\text{C}, \text{gelbe Kristalle aus Ether/Petrolether (1:1)}]$ bei 20°C]. $- {}^{1}$ H-NMR (CDCl₃): $\delta = 7.93$ (3H, "d", 2,6-H COC₆H₅ und NH), 7.62 und 7.55 (1:2, je "t", 4-H und 3,5-H COC₆H₅), 7.41 $(1 \text{ H}, \text{ dd}, {}^{3}J = 7 \text{ Hz}, {}^{4}J = 1, 4 \text{-H Inden}), 7.30 (1 \text{ H}, \text{ td}, {}^{3}J = 7 \text{ und})$ 7 Hz, ${}^{4}J = 1$, 5-H Inden), 7.20 (1 H, t, ${}^{3}J = 7$ und 7 Hz, 6-H Inden), 7.14 (1 H, d, ${}^{3}J = 7$ Hz, 7-H Inden), 1.90 (3 H, s, CH₃). – IR (Film): cm^{-1} (%), 3296 breit [v(N-H)], 1707.0 (60), 1660.7 (60), 1629.8 (70), 1595.1 (90), 1577.8 (100), 1512.2 (70), 1487.1 (60), 1456.3 (80), 1446.6 (70) [Amid I und II sowie v(C=O) eventuell von zwei Konformations isomeren]. - MS (70 eV): m/z (%) = 263 (6) [M^{\oplus}], 235 (12) [M - CO], 105 (100) $[C_6H_5CO]$.

> C₁₇H₁₃NO₂ (263.3) Ber. C 77.55 H 4.98 N 5.32 Gef. C 77.35 H 5.17 N 5.25

N,N-Diethyl-2-phthalidylidenpropanamid (12) und 2-(Diethylcarbamoyl)-2-methyl-1,3-indandion (13) durch Umsetzung von Phthalsäureanhydrid mit 4: Zu einer Suspension von 148 mg (1.00 mmol) Phthalsäureanhydrid in einem 5-ml-Glasgefäß tropft man unter Rühren eine Lösung von 111 mg (1.00 mmol) 4 in 3 ml Ether. Die Reaktion ist leicht exotherm. In 0.5 bis 1 h bei 20°C scheiden sich farblose Kristalle von 13 ab [180-200 mg, 69-77%, Schmp. 94°C aus Ether, $R_f = 0.5$ in Petrolether/Ether (2:1)]. Die Mutterlauge wird eingedampft, der Rückstand in wenig Dichlormethan aufgenommen und an Kieselgel chromatographiert (Säule 20 × 2 cm). Mit Petrolether/Ether (2:1) eluiert man restliches 13 und anschlie-Bend 12 [20-40 mg, 8-16%, $R_f = 0.3$, farblose Kristalle aus Ether/Petrolether (1:20) bei -15° C, Schmp 88°C).

12: ¹H-NMR (CDCl₃): $\delta = 7.92$ und 7.59 (je 1 H, je d, ³J = 8 Hz), 7.62 und 7.52 (je 1 H, je t, ${}^{3}J = 8$ und 8 Hz), 3.63 und 3.45 (je 2H, je q, je NCH₂), 2.26 (3H, s, CH₃), 1.36 und 1.11 (je 3H, je t, je CH₃ Et). $- {}^{13}$ C-NMR (CDCl₃): $\delta = 167.7$ und 165.9 (CO-O und CONEt2); 142.6, 137.0, 124.7 (C-1, 4, 9); 134.3, 129.7, 125.1, 122.0 (C-5 bis 8); 115.2 (= C – Me); 42.5, 38.7 (je NCH₂); 15.2, 14.0, 12.3 (je CH₃). – IR (Film), cm⁻¹ (%): $\tilde{v} = 1762.2$ (100) [v(C=O) Lacton], 1627.9 (100) [v(C=O) Amid]. – MS (70 eV): m/z (%) = 259 (16) $[M^{\oplus}]$, 244 (4) $[M - CH_3]$, 215 (24) [244 - Et], 214 (20), 204 (12), 187 (100) [215 - CO], 159 (42) [187 - CO], 131 (60), 103(62)

13: ¹H-NMR (CDCl₃): $\delta = 8.10$ und 7.90 (je 2H, AA'XX'-System, C_6H_4), 3.30 und 3.00 (je 2 H, je "s" breit, je NCH₂), 1.70 (3 H, s, 2-CH₃), 1.10 und 1.00 (je 3H, je "s" breit, je CH₃ Et). - ¹³C-NMR $(CDCl_3)$: $\delta = 197.6$ (2 C=O, C-1,3), 164.8 (CONEt₂), 140.2 (2 C, C-3a,7a), 140.2 und 136.0 (je 2 C, C-4,7 und C-5,6), 62.6 (C-2), 41.0 (2 C, breit, NCH₂), 20.2 (C-2), 12.6 (2 C, breit, CH₃ Et), - IR (Film), cm^{-1} (%): $\tilde{v} = 1737.9$ (60), 1703.1 (80), 1645.3 [v(CONEt_2)]. - MS $(70 \text{ eV}): m/z \ (\%) = 259 \ (40) \ [M^{\oplus}], 244 \ (8), 215 \ (40) \ [244 - \text{Et}],$ 200 (20) [215 - Me], 187 (100) [215 - CO], 159 (80) [187 -CO], 131 (60), 103 (50), 72 (100).

> C₁₅H₁₇NO₃ (259.3) Ber. C 69.48 H 6.61 N 5.40 12: Gef. C 69.54 H 6.65 N 5.41 13: Gef. C 69.11 H 6.51 N 5.32

endo-6-(Diethylcarbamoyl)-exo-6-methyl-1,3,5-triphenyl-2-oxa-4-aza-bicyclo[3.1.0]hex-3-en (14) durch Thermolyse von 7: Man erwärmt eine Lösung von 62 mg (0.10 mmol) 7 in trockenem Toluol auf 80°C. Anhand von DC-Tests wird gezeigt, daß 7 nach 45 min

vollständig verbraucht ist. Bei der Chromatographie an Kieselgel (Säule 20 \times 2 cm) mit Dichlormethan/Ether (10:1) eluiert man 14 $[R_{\rm f} = 0.2$ in Dichlormethan/Ether (10:1), 40 mg, 94%, farblose Kristalle, Schmp. 118°C, aus Ether/Petrolether (1:5) bei -20° C]. - ¹H-NMR (C₆D₆/CS₂ 1:1): $\delta = 8.00, 7.60, 7.48$ (je 2H, je "d", je 2,6-H von 3 C₆H₅); 7.50-7.30 (9H, m, 3 bis 5H von 3 C₆H₅); 3.50 und 2.90 (3:1, je m, NEt₂), 1.50 (3H, s, 6-CH₃), 1.32 und 0.60 (je 3H, je t, je CH₃ Et). - ¹³C-NMR (CDCl₃): $\delta = 166.6$ und 161.8 (C-3 und COEt); 130.6, 128.9, 126.1, (je i-C von 3 C₆H₅); 131.4, 131.0, 128.9, 128.5, 128.3, 128.0, 127.6, 127.0 (2:1:1:2:2:4:2:1, je CH von 3 C₆H₅); 78.0, 66.8, 34.8 (C-1,5,6 des Cyclopropanrings); 41.7 und 38.4 (NEt₂); 16.4, 13.6, 12.1 (je CH₃). – IR (Film), cm⁻¹: $\tilde{v} = 1639.5 [v(C=O)]. - MS (70 eV): m/z (\%) = 424 (1) [M^{\oplus}],$ 406 (6), 405 (8), 334 (20), 324 (60) $[M - CONEt_2]$, 319 (6) [MC₆H₅CO], 306 (12), 246 (10), 202 (22), 152 (10), 151 (10), 105 (100).

C₂₈H₂₈N₂O₂ (424.6) Ber. C 79.22 H 6.65 N 6.60 Gef. C 79.22 H 6.76 N 6.53

2,4,5-Triphenyloxazol (15) durch Thermolyse von 3: Eine Suspension von 252 mg (0.50 mmol) 3³⁾ in 2 ml trockenem Toluol wird in einem luftdicht verschraubbaren 5-ml-Glasgefäß unter Rühren 5 h auf 100°C erwärmt. Vorsicht, es entsteht ein Überdruck (CO₂)! Man chromatographiert an Kieselgel (Säule 20 × 2 cm) mit Petrolether/ Dichlormethan (1:1). Nach einem farblosen Vorlauf von Cr(CO)₆ erhält man das in Lösung bläulich fluoreszierende 15 $\lceil R_f = 0.4$ in Petrolether/Dichlormethan (1:1), 60 mg, 40%, Schmp. 116°C, Lit.¹⁴ 116°C]. – ¹H-NMR (CDCl₃): δ = 8.18, 7.75, 7.65 (je 2H, je "d", je 2,6-H von 3 C_6H_5), 7.50 – 7.30 (9 H, m, 3- bis 5-H von 3 C_6H_5). – ¹³C-NMR (CDCl₃): $\delta = 159.9$ (C-2), 145.3 (C-5), 136.6 (C-4); 132.4, 128.8, 127.2 (je i-C von 3 C₆H₅); 130.1, 128.7, 128.6, 128.3, 128.1, 128.0, 126.3, 126.2 (1:2:4:1:1:2:2:2, 3 C_6H_5). - MS (70 eV): m/z $(\%) = 297 (40) [M^{\oplus}], 269 (30) [M - CO], 166 (40) [269 -$ C₆H₅CN], 165 (100), 105 (50) [C₆H₅CO].

> C₂₁H₁₅NO (297.4) Ber. C 84.82 H 5.08 N 4.71 Gef. C 84.74 H 4.92 N 4.72

CAS-Registry-Nummern

3: 117497-95-7 / 4: 4231-35-0 / 5: 123810-12-8 / 6: 123775-95-1 / 7-A: 123877-53-2 / 7-B: 123775-97-3 / 9: 123775-98-4 / 10: 101600-58-2 / 11: 85-44-9 / 12: 36692-55-4 / 13: 36692-53-2 / 14: 123775-96-2 / 15: 513-34-2 / Cr(CO)6: 13007-92-6

- ¹⁾ 42. Mitteilung: R. Aumann, H.-D. Melchers, H.-J. Weidenhaupt, Chem. Ber. 123 (1990) 351.
- ²⁾ H. Fischer, J. Organomet. Chem. 197 (1980) 303; H. Fischer, U. Schubert, R. Märkl, Chem. Ber. 114 (1981) 3412; H. Fischer, S Zeuner, K. Ackermann, U. Schubert, J. Organomet. Chem. 263 (1984) 201; F. Seitz, H. Fischer, J. Riede, ibid. 287 (1985) 87
- ³⁾ R. Aumann, S. Althaus, C. Krüger, P. Betz, Chem. Ber. 122 (1989) 357
- ⁴⁾ D. C. Yang, V. Dragisich, W. D. Wulff, J. C. Huffman, J. Am. Chem. Soc. 110 (1988) 307.
- ⁵⁾ R. Aumann, H. Heinen, Chem. Ber. 122 (1989) 1139.
- ⁶⁾ R. Aumann, H. Heinen, C. Krüger, P. Betz, Chem. Ber. 123 (1990) 599, voranstehend.
- ⁷⁾ H. Fischer, R. Aumann, 1989, unveröffentlicht.
- ⁸⁾ C. Krüger, Mülheim 1989.
- ⁹⁾ R. Aumann, P. Hinterding, Chem. Ber. 122 (1989) 365.
- ¹⁰⁾ C. O. Meese, W. Walter, M. Berger, J. Am. Chem. Soc. 96 (1974) 2259; W. Walter, C. O. Meese, Chem. Ber. 110 (1977) 2463.
- ¹¹⁾ P. Hofmann, M. Hämmerle, Angew. Chem. 101 (1989) 940; Angew. Chem. Int. Ed. Engl. 28 (1989) 908.
- ¹²⁾ J. Ficini, A. Krief, Tetrahedron Lett. (1969) 1427; R. Fuks, H. G.
- Viehe, *Chem. Ber.* **103** (1970) 564; 573. ¹³⁾ F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1. ¹⁴ W. B. Lesli, G. W. Watt, J. Org. Chem. 7 (1942) 73.

[258/89]